МАГНИТСКИЙ ЛЕОНИД АЛЕКСЕЕВИЧ

СРАВНЕНИЕ МЕТОДОВ ВОССТАНОВЛЕНИЯ АРТЕРИАЛЬНОГО МАГИСТРАЛЬНОГО КРОВОТОКА ПРИ ХРОНИЧЕСКИХ ОККЛЮЗИОННО-СТЕНОТИЧЕСКИХ ПОРАЖЕНИЯХ ПОДКОЛЕННОЙ АРТЕРИИ

14.01.26 – сердечно-сосудистая хирургия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена на кафедре факультетской хирургии №1 лечебного факультета федерального государственного бюджетного образовательного учреждения высшего образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения Российской Федерации, г. Москва.

Научный руководитель:

доктор медицинских наук, профессор кафедры факультетской хирургии №1 лечебного факультета ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России

КУЗНЕЦОВ Максим Робертович

Официальные оппоненты:

доктор медицинских наук, профессор кафедры хирургических болезней и клинической ангиологии Московского Государственного Медико-Стоматологического Университета.

ГАДЖИМУРАДОВ Расул Увайсович

доктор медицинских наук, врач сердечнососудистый хирург ГБУЗ ГКБ №15 ДЗМ, профессор кафедры сердечно-сосудистой хирургии ФПК РУДН.

УЧКИН Илья Геннальевич

Ведущая организация: Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Министерства здравоохранения Российской Федерации

Защита состоится «___» 2019 г. в ____ часов на заседании диссертационного совета Д 208.124.01 на базе федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского» Министерства здравоохранения Российской Федерации по адресу: 117997, г. Москва, ул. Большая Серпуховская, д. 27.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУ «НМИЦ хирургии им. А.В. Вишневского» Минздрава России, https://www.vishnevskogo.ru

Автореферат разослан « _»_____ 2019 г.

Ученый секретарь диссертационного совета доктор медицинских наук,

САПЕЛКИН Сергей Викторович

Актуальность исследования

Сердечно-сосудистые заболевания лидируют в структуре общей смертности во всем мире [Вагquera S. et al., 2015] и в России составляют 57,1% [Покровский А.В., Харазов А.Ф., 2011]. Заболевания периферических артерий занимают третье место по частоте встречаемости, уступая лишь ишемической болезни сердца и нарушениям мозгового кровообращения [Fowkes F.G.R. et al., 2013]. По всему миру от данной патологии страдает более 202 млн. человек с постоянной тенденцией к увеличению количества больных. Распространенность заболеваний периферических артерий с 2000 по 2010 год повысилась на 23,5% [Fowkes F.G.R. et al., 2013]. Важно отметить, что примерно в 70% случаев поражения локализованы в бедренно-берцовом сегменте, при этом доля пациентов с вовлечением в патологический процесс подколенной артерии и артерий голени составляет 22%, и этот показатель неуклонно растет [Куперберг Е.Б., Гайдашев Ф.Э., Тутова М.Г., 1996; Покровский А.В., 2004; Ascher H.E. et al., 2008].

Основной задачей реконструктивной сосудистой хирургии вне зависимости от причин окклюзионно-стенотического поражения артериального русла (облитерирующий атеросклероз, облитерирующий тромбангиит, неспецифический аортоартериит, тромбоз аневризматических расширений и др.) является выбор оптимального метода восстановления магистрального кровотока с целью повышения качества жизни и спасения конечности [Gerhard-Herman и др., 2017]. По различным данным, от 10 до 15% пациентов с перемежающейся хромотой в течение 5 лет переходят в стадию критической ишемии [Aboyans V. et al., 2017; Murphy T.P. et al., 2015]. При этом, отсутствие улучшения на фоне адекватной консервативной терапии и физических упражнений у пациентов с перемежающейся хромотой, существенно лимитирующей повседневную активность, является показанием к операции [Gardner A.W. et al., 2011; Saxton J.M. et al., 2011].

Подколенная артерия, несмотря на малую длину, обладает крайне широким разнообразием встречаемой патологии. Наряду с распространенными артериальными заболеваниями, такими как облитерирующий атеросклероз, аневризматическое расширение, встречаются редкие и специфические поражения [Davidovic L.B., 2014]. И, несмотря на схожую клиническую картину, лечебная тактика и прогнозируемый исход реваскуляризации существенно различаются. Знание анатомических вариантов деления подколенной артерии позволяет снизить ятрогенную сосудистую травму и избежать таких осложнений как формирование артерио-венозных фистул, псевдоаневризм подколенной артерии после различных ортопедических и сосудистых операций [Kropman R.H.J. et al., 2011]. В свою встречаемые патологии подколенной артерии остаются недиагностированными, что может приводить к выбору неверной тактики лечения.

Реконструктивные хирургические операции в бедренно-подколенной зоне в 10 раз чаще осложняются ретромбозами в раннем послеоперационном периоде, чем вмешательства на аорто-бедренном сегменте. Частота ранних тромбозов артериальных протезов может достигать 25%, достоверно увеличиваясь при вмешательствах на более дистальных сегментах конечности [Кохан Е.П., Пинчук О.В., Савченко С.В., 2001; Norgren L. et al., 2007]. При протяженной окклюзии поверхностной бедренной артерии с вовлечением в патологический процесс подколенного сегмента в классическом варианте выполняют бедренно-подколенное шунтирование ниже щели коленного сустава с доступом в верхней трети голени [Белов Ю.В., 2000]. Несмотря на устоявшиеся принципы сосудистой хирургии и возможности использования этого способа восстановления магистрального кровотока нижних конечностей, он, тем не менее, обладает целым рядом существенных недостатков (несоответствие диаметра периферического сопротивления, принимающей артерии, выключение из кровотока коллатерального русла и пр.), что диктует необходимость совершенствования методик по реваскуляризации бедренно-берцового сегмента.

Цель работы: Улучшение результатов хирургического лечения пациентов с хроническим окклюзионно-стенотическим поражением подколенной артерии.

Задачи исследования

Для реализации данной цели были поставлены следующие задачи:

- 1. Проанализировать доступные методы реваскуляризации нижних конечностей у больных с хроническими окклюзионно-стенотическими поражениями подколенной артерии, их преимущества и недостатки.
- 2. Уточнить показания и противопоказания к различным методам оперативного лечения при сегментарном поражении подколенной артерии.
- 3. Предложить хирургическую методику альтернативную бедренно-подколенному шунтированию ниже щели коленного сустава.
- 4. Определить методы восстановления магистрального кровотока при протяженной окклюзии поверхностной бедренной и подколенной артерий.
- 5. Оценить кумулятивную первичную и вторичную проходимость сосудистых протезов при хирургическом лечении протяженных окклюзий поверхностной бедренной и подколенной артерий.
- 6. Выявить долю больных с сохраненной конечностью в отдаленном периоде при различных вариантах лечения протяженных поражений бедренно-подколенного сегмента, а

также распределить пациентов в зависимости от вида хирургической реконструкции и уровня ампутаций нижней конечности.

Научная новизна

- 1. Предложена новая хирургическая техника, альтернативная бедренноподколенному шунтированию ниже щели коленного сустава, заключающаяся в комбинировании полузакрытой эндартерэктомии из подколенной артерии с бедренноподколенным шунтированием выше щели коленного сустава (получен патент на изобретение № 2601698 от 06.08.2015 г).
- 2. Изучены ближайшие и отдаленные результаты разработанного вмешательства, проведено сравнение с результатами бедренно-подколенного шунтирования ниже щели коленного сустава.
- 3. Отражено преимущество предложенной методики перед бедренно-подколенным шунтированием ниже щели коленного сустава.
- 4. Конкретизированы показания и противопоказания к выполнению эндоваскулярных вмешательств (баллонная ангиопластика, стентирование) на подколенной артерии при окклюзионно-стенотическом поражении.

Практическая значимость работы

Данное исследование определяет оптимальный метод оперативного лечения окклюзионно-стенотического поражения подколенной артерии в зависимости от локализации, вида и распространенности поражения.

Разработана методика выполнения полузакрытой эндартерэктомии с бедренноподколенным шунтированием выше щели коленного сустава, позволяющая улучшить
результаты хирургического лечения у больных с вовлечением в патологический процесс Р1, Р2
или всех сегментов подколенной артерии, предотвратить развитие осложнений исследуемой
категории пациентов, ускорить восстановление и реабилитацию пациентов, снизить
экономические затраты на лечение данной группы, избежать выполнения в ряде случаев
повторных операций.

Положения, выносимые на защиту

- 1. Предложенный метод прямой эндартерэктомии из подколенной артерии в комбинации с бедренно-подколенным шунтированием выше щели коленного сустава является хорошей альтернативой классическому дистальному бедренно-подколенному шунтированию.
- 2. При определении показаний к эндоваскулярному лечению сегментарных окклюзий подколенной артерии необходимо уделять большое значение этиологическому фактору.

3. Благоприятный прогноз отдаленных результатов в большей степени зависит от состояния путей оттока, нежели от исходной степени хронической ишемии.

Апробация работы

Основные положения и результаты диссертационного исследования доложены на заседании кафедры факультетской хирургии №1 лечебного факультета ФГБОУ ВО РНИМУ им. Н.И. Пирогова совместно с сотрудниками III, IV отделений сосудистой хирургии 12 января 2018 года.

Материалы диссертации были представлены на следующих научных мероприятиях:

- V Научно-практическая конференция «Возможности диагностики и лечения заболеваний сосудов современный взгляд и шаг в будущее» (г. Нижний Новгород, 2015);
- XII Съезд хирургов России (г. Ростов-на-Дону, 2015);
- XXII Всероссийский съезд сердечно-сосудистых хирургов (г. Москва, 2016);
- Controversies and Updates in Vascular Surgery Congress (г. Париж, 2017);
- XXIII Всероссийский съезд сердечно-сосудистых хирургов (г. Москва, 2017);
- ESVS 32nd Annual Meeting (г. Валенсия, 2018).

Публикации

По теме диссертации опубликовано 11 научных работ, среди которых 5 статей в ведущих рецензируемых научных журналах, определенных ВАК, 6 тезисов в различных сборниках научных трудов.

Структура и объем диссертации

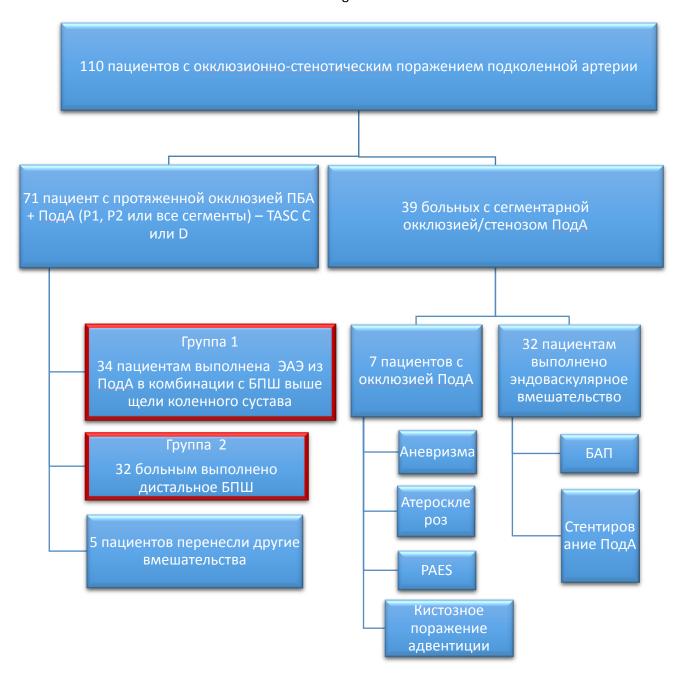
Диссертационная работа изложена на 131 странице машинописного текста, состоит из введения, четырех глав и выводов, клинических рекомендаций, списка использованной литературы. Работа содержит 16 таблиц и 48 рисунков. Библиографический список использованной литературы включает 27 отечественных и 99 зарубежных источников.

СОДЕРЖАНИЕ РАБОТЫ

Клинический материал

В исследование было включено 114 пациентов с хроническим окклюзионностенотическим поражением подколенной артерии, находившихся на лечении с 2006 по 2017 г., из них оперировано 110 больных. В зависимости от вида заболевания, распространенности и локализации атеросклеротического процесса, пациенты, которым выполнялась артериальная реконструкция, были разделены по протяженности: с распространенным поражением ПБА и ПодА и с сегментарной окклюзией или стенозом подколенной артерии.

У 71 больного имелась протяженная окклюзия ПБА класс С или D по TASC-II с вовлечением в патологический процесс P1, P2, или всех сегментов подколенной артерии. Оперативное вмешательство выполнялось при наличии, по крайней мере, одной проходимой артерии голени на протяжении 8 см и более. Пациенты были разделены на 3 группы в зависимости от метода артериальной реваскуляризации.


34 больным с целью восстановления магистрального кровотока применяли эндартерэктомию из подколенной артерии в комбинации с БПШ выше щели коленного сустава (патент РФ № 2601698). Данные пациенты были включены в основную группу исследования.

В качестве контрольной группы были отобраны 32 пациента, которым было выполнено дистальное бедренно-подколенное шунтирование по общепринятой методике с использованием в качестве шунта аутовены, синтетического материала или их комбинацию. Данная группа пациентов соответствовала по полу, возрасту, классу артериальной недостаточности, состоянию путей оттока, факторам риска основной подгруппе.

Ряду пациентов, составляющих 3-ю подгруппу, при описанном поражении артериального русла выполнялись другие вмешательства (эндоваскулярная реканализация хронической окклюзии ПБА и ПодА, в комбинации со стентированием поверхностной бедренной артерии, эндартерэктомия из ПодА задним доступом, тромбэктомия катетером Фогарти или петлевая эндартерэктомия из дистального сегмента поверхностной бедренной артерии).

В другую группу больных было включено 39 больных, имеющих сегментарную окклюзию или стеноз подколенной артерии при проходимой ПБА (проксимальной и средней её трети). Заболеванием, приведшим к хронической артериальной недостаточности, у 4 больных являлась аневризма подколенной артерии, у 1 больной — синдром «ловушки» подколенной артерии, у 1 пациента — кистозное поражение адвентиции подколенной артерии, в остальных случаях — облитерирующий атеросклероз артерий нижних конечностей.

Наиболее наглядно дизайн исследования представлен на Рисунке 1.

Рисунок 1. Дизайн исследования (хирургическая группа)

Критериями включения пациентов в хирургическую группу исследования явились:

- 1. Окклюзионно-стенотическое поражение подколенной артерии (изолированное или в комбинации с окклюзией ПБА).
 - 2. Наличие хотя бы одной проходимой артерии голени на протяжении 8 см и более.
- 3. Хроническое заболевание, приводящее к XAHK класса II Б IV по Фонтейну-Покровскому.

4. Отсутствие окклюзии или гемодинамически значимых стенозов аорто-бедренного сегмента, либо выполнение гибридного вмешательства с восстановлением магистрального кровотока (реканализация/стентирование подвздошного сегмента) «путей притока».

Критерии исключения пациентов из хирургической группы исследования были следующие:

- 1. Неудовлетворительные пути оттока: окклюзия всех трех артерий голени или длина единственной проходимой артерии голени менее 8 см.
 - 2. Неудовлетворительные пути притока: окклюзия подвздошных артерий, аорты.
 - 3. Отказ пациента от оперативного лечения.

В проведенном исследовании применялись следующие методы обследования больных:

- Анамнестический
- Клинический
- Лабораторный
- Инструментальный
- Статистический

Из инструментальных методов диагностики мы использовали ультразвуковое ангиосканирование с расчетом лодыжечно-плечевого индекса (ЛПИ) на аппарате «HD 11» фирмы «PHILIPS» с линейными датчиками 7-10 МГц и конвексными датчиками 3,5-5 МГц, рентгенконтрастную ангиографию на установке «Axiom Artis» фирмы «Siemens» с применением цифровой субтракционной техники обработки изображения, мультиспиральную компьютерную томоангиографию артерий нижних конечностей на аппарате «Aquilion Prime» фирмы «Toshiba».

Обработку данных производили с применением программы Statistica 12.0, StatSoft, Inc. Учитывая небольшой объем выборки (N < 50), для проверки нормальности распределения в совокупности мы использовали тест Шапиро-Уилка. При отличном от нормального распределения данных для проверки статистических гипотез при сравнении числовых данных для двух независимых групп применяли U-критерий Манна-Уитни. Различия между группами считали значимыми при $p \le 0.05$.

Для оценки значимости различий между выявленным в результате исследования количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы, использовался критерий χ квадрат Пирсона.

Результаты исследования

В настоящем исследовании мы разработали метод восстановления магистрального кровотока нижних конечностей, обеспечивающей адекватный кровоток при окклюзии поверхностной бедренной артерии и подколенной артерии на уровне щели коленного сустава (патент РФ на изобретение № 2601698 от 06.08.2015 г.). Оперативное пособие выполнялось следующим образом: после соответствующей анестезии (спинальная, эпидуральная, эндотрахеальная и др.) пациента укладывали на живот с небольшим валиком под голенью. Прямым или S-образным доступом в подколенной ямке выделяли подколенную артерию в дистальном направлении до неизмененной стенки, а в проксимальном — до ее верхней трети у выхода поверхностной бедренной артерии из Гунтерова канала (canalis adductorius). Далее выполнялись два артериотомических отверстия: отверстие «а» у дистальной, а отверстие «б» у проксимальной границы выделенной подколенной артерии — на 4-6 см выше щели коленного сустава «в» (Рисунок 2).

Через эти отверстия производили полуоткрытую эндартерэктомию с выбором оптимальной плоскости расслоения в зависимости от распространенности атеросклеротического процесса (субинтимально/ трансмедиально/субадвентициально), после чего отверстие «а» ушивали либо «край в край», либо с помощью заплаты («б») (Рисунок 3).

В проксимальное артериотомическое отверстие вшивался конец сосудистого протеза (синтетический протез ePTFE, Gore и др.) с формированием дистального анастомоза с подколенной артерией и создавалась контрапертура в нижней трети медиальной поверхности бедра в жоберовой ямке, куда проводился имплантируемый сосудистый протез. После этого рану в подколенной области ушивали наглухо, а пациента переворачивали на спину.

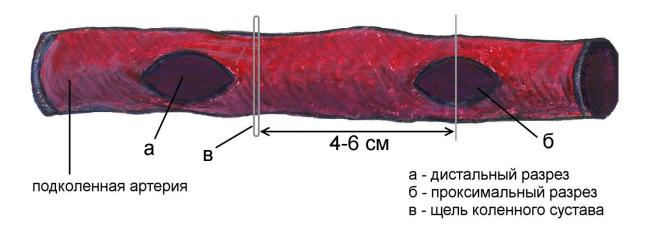
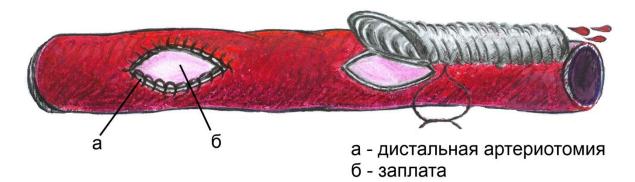



Рисунок 2. Схема выполнения артериотомических отверстий

Рисунок 3. Ушивание дистального артериотомического отверстия заплатой, формирование анастомоза

Далее в паховой области выделяли общую, поверхностную и глубокую бедренные артерии, сосудистый протез субфасциально или подкожно проводили на бедро и накладывался типичный проксимальный анастомоз с бедренной артерией.

Клинические результаты

В группу 1 включено 34 пациента, из них 29 мужчин и 5 женщин. Средний возраст больных на момент операции в описываемой группе составил $58,62 \pm 1,49$ лет и варьировал от 40 до 77 лет, в интервале от 50 до 65 лет находились 64,7% больных.

Средний возраст на момент контрольного осмотра пациентов составил $63,97 \pm 1,48$ лет (от 47 до 81 года).

В ГКБ №1 им. Н.И. Пирогова нами оперировано 7 пациентов, в ЦКБ Святителя Алексия Митрополита Московского — 26 больных и в ГКБ №29 им. Н.Э. Баумана — 1 пациент. Стационарный койко-день варьировал от 9 до 53 дней, медиана — 21 день (интерквартильный размах от 15 до 24 дней). При этом медиана койко-дня в отделениях реанимации и интенсивной терапии составила 1 день (интерквартильный размах от 1 до 2 койко-дней).

У 32 больных причиной развития окклюзии артериального русла явился облитерирующий атеросклероз (94,1% от общего числа пациентов подгруппы), у 2 – облитерирующий тромбангиит (5,89%).

У 73,5% пациентов подгруппы показанием к выполнению операции являлась критическая ишемия (ХАНК III и IV по Фонтейну-Покровскому). Медиана дистанции безболевой ходьбы составила 0 метров (интерквартильный размах от 0 до 70 метров).

Все пациенты имели поражение артериального русла класса D по TASC II.

Все три артерии голени были проходимы у 11 пациентов (32,35%), две - у 11 пациентов (32,35%) и одна артерия у 12 больных (35,29%).

Длительность операции варьировала от 115 до 330 минут, кровопотеря – от 150 до 350 мл.

У 3 пациентов (8,82%) дистальное артериотомическое ушивалось без использования заплаты (ввиду достаточного диаметра), у 17 пациентов (50%) в качестве заплаты использовался синтетический материал (у 8 больных - из материала Gore-Tex, у 9 - из материала РТFE), у 14 больных (41,18%) применялась аутовенозная заплата из малой подкожной вены.

В качестве сосудистого протеза в 14 случаях (41,18%) использовался материал «Gore-Tex», в 20 (58,82%) - PTFE.

Среди дополнительных вмешательств в 1 случае была выполнена фасциотомия передней и задней групп мышц голени в связи с выраженным субфасциальным отеком на фоне ранней реокклюзии сосудистого протеза, 1 пациенту после успешно выполненной сосудистой операции произведена ампутация стопы по Шопару по поводу гангрены пальцев. Также 1 больному до основного этапа была выполнена петлевая эндартерэктомия из наружной подвздошной артерии по поводу критического стеноза.

В группу 2 было включено 32 пациента, среди них 22 мужчин и 9 женщин. Средний возраст больных на момент вмешательства составлял $61,72 \pm 1,49$ лет и варьировал от 39 до 78 лет. В интервале от 50 до 70 лет находилось 81,3% больных.

Средний возраст на момент контрольного осмотра пациентов составил $64,56 \pm 1,43$ лет (от 45 до 80 лет).

В ГКБ №1 им. Н.И. Пирогова нами оперировано 10 пациентов, в ЦКБ Святителя Алексия Митрополита Московского — 11 больных и в ГКБ №29 им. Н.Э. Баумана — 11 пациентов. Стационарный койко-день варьировал от 7 до 35 дней, медиана — 11,0 дней (интерквартильный размах от 10,0 до 15,5 дней). При этом медиана койко-дня в отделениях реанимации и интенсивной терапии составила 1 день (интерквартильный размах от 0 до 2,0 койко-дней).

У всех больных причиной развития окклюзии артериального русла явился облитерирующий атеросклероз.

У 65,63% пациентов подгруппы показанием к выполнению операции являлась критическая ишемия (ХАНК III и IV по Фонтейну-Покровскому). Медиана дистанции безболевой ходьбы составила 40 метров (интерквартильный размах от 0 до 100 метров).

Все пациенты имели поражение артериального русла класса D по TASC II. Все три артерии голени были проходимы у 10 пациентов (31,25%), две – у 13 пациентов (40,63%) и одна артерия у 9 больных (28,13%).

Длительность операции варьировала от 130 до 450 минут, кровопотеря — от 100 до 350 мл. В 14 случаях выполнено бедренно-подколенное шунтирование ниже щели коленного сустава реверсированной аутовеной, 12 больным — БПШ ниже щели коленного сустава большой подкожной веной «in situ». У 4 больных в качестве протеза использовалась комбинация

большой подкожной вены в подколенном сегменте и синтетического материала на бедре (2 протеза «Gore» и 2 «Vascutek»). 2 больным выполнялось дистальное бедренно-подколенное шунтирование синтетическим протезом «Gore» с применением венозной «проставки» при формировании дистального анастомоза. Среди дополнительных вмешательств 2 больным выполнялась фасциотомия передней и задней групп мышц голени в связи с выраженным субфасциальным отеком.

При сравнении пациенты групп 1 и 2 не имели между собой статистически значимой разницы по основным характеристикам, степени артериальной недостаточности, ЛПИ при поступлении, количеству артерий «оттока» и факторам риска (p > 0.05) — Таблица 1.

Таблица 1. Сравнение групп 1 и 2 по основным характеристикам и факторам риска.

Переменная		ЭАЭ из ПодА + БПШ (n = 34)	Дистальное БПШ (n = 32)	Значение Р	
Возраст, среднее (ранжирование), лет		58,62 (40 – 77)	61,72 (39 – 78)	0,146 ^a	
	Мужской		29 (85,3)	23 (71,9)	0,18 ^б
	Пол, (%)	Женский	5 (14,7)	9 (28,1)	0,18
		ХАНК 2б	9 (26,5)	11 (34,4)	
Показания к		ХАНК 3	14 (41,2)	10 (31,2)	0,67 ^б
ОП	ерации, (%)	XAHK 4	11 (32,3)	11 (34,4)	,
Дистанция безболевой ходьбы, среднее (ранжирование), м		35 (0 – 150)	45,6 (0 – 150)	0,23 в	
	ЛПИ, среднее (стандартное отклонение)		0,31 (0,12)	0,27 (0,15)	0,17 в
	ИБС		22 (64,7)	26 (81,3)	0,13 ^б
(Сахарный диабет		7 (20,6)	8 (25)	0,67 ^б
іска (%)	ОНМК/ТИА		3 (8,8)	4 (12,5)	0,63 ⁶
	Артериальная гипертензия		27 (79,4)	28 (87,5)	0,38 ⁶
ı pı	Гиперхолестеринемия		28 (82,4)	24 (75)	0,47 ^б
Факторы риска (%)	Креатинин, среднее (CO), мкмоль/л		91,41 (13,06)	93,63 (14,25)	0,365 в
	ИМТ, среднее (CO), кг/м ²		28,88 (2,78)	27,5 (1,95)	0,06 в
	Курение (%)		27 (79,4)	25 (78,1)	0,9 ⁶
		1 (%)	12 (35,3)	9 (28,1)	
Количество артерий оттока а – t-критерий		2 (%)	11 (32,35)	13 (40,6)	0,75 ⁶
		3 (%)	11 (32,35)	10 (31,3)	

а – t-критерий Стьюдента, б – Xи-квадрат тест, в – U-критерий Манна-Уитни

Среди 33 пациентов, перенесших рентгенэндоваскулярное вмешательство, было 15 мужчин и 18 женщин. Средний возраст больных на момент операции составлял $70,42 \pm 1,99$ лет и варьировал от 40 до 87 лет. Средний возраст на момент контрольного осмотра пациентов составил $72,21 \pm 1,89$ лет (от 43 до 88 лет).

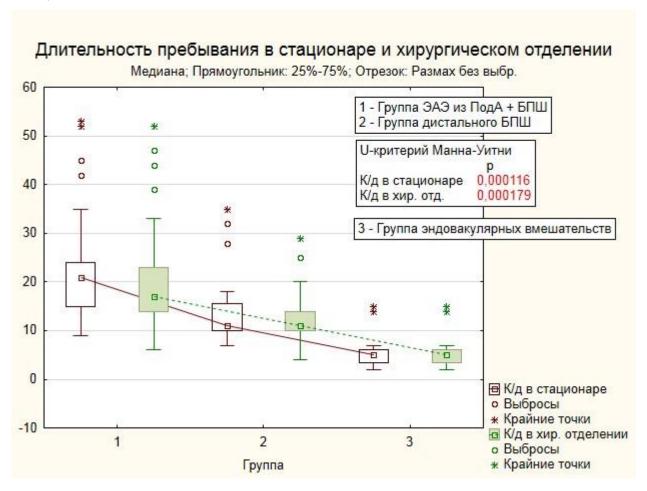
В ГКБ №1 им. Н.И. Пирогова нами оперировано 12 пациентов, в ГКБ №29 им. Н.Э. Баумана – 21 пациент. Стационарный койко-день варьировал от 2 до 15 дней, медиана – 5 дней (интерквартильный размах от 4 до 6 дней). Медиана койко-дня в ОРИТ составила 0 дней (всего в 3 случаях послеоперационный период потребовал наблюдения и лечения в условиях реанимационного отделения, максимальная длительность пребывания – 8 койко-дней).

У всех больных причиной развития стеноза/окклюзии артериального русла явился облитерирующий атеросклероз.

У 57,6% пациентов подгруппы показанием к выполнению операции являлась критическая ишемия (ХАНК III и IV по Фонтейну-Покровскому). Медиана дистанции безболевой ходьбы составила 40 метров (интерквартильный размах от 10 до 100 метров).

Все три артерии голени были проходимы у 14 пациентов (42,42%), две - у 12 пациентов (36,36%) и одна артерия у 7 больных (21,21%).

Длительность операции варьировала от 80 до 240 минут, кровопотеря – от 20 до 150 мл.


В 16 случаях выполнена баллонная ангиопластика подколенной артерии, при этом у 3 больных выполнялась реканализация хронической окклюзии. 16 больным произведено стентирование подколенной артерии. 1 пациенту с тяжелой сопутствующей патологией, препятствующей выполнению шунтирующей операции, была выполнена эндоваскулярная реканализация хронической окклюзии ПБА и ПодА, в комбинации со стентированием поверхностной бедренной артерии. В 2 случаях установлен стент Complete (производство Medtronic), в 1 – Хрегt pro (Abbott Vascular), в 13 – Supera (Abbott Vascular).

Среди дополнительных вмешательств 2 больным было выполнено стентирование ПБА (стенты SMART, Cordis), 4 пациентам – стентирование подвздошных артерий (стенты ABSOLUTE PRO, Abbott Vascular) и 13 больным во время вмешательства также была выполнена баллонная ангиопластика артерий голени.

Пациенту с кистозным поражением адвентиции подколенной артерии выполнено протезирование подколенной артерии синтетическим материалом (политетрафторэтилен) с формированием анастомоза конец-в-конец ввиду отсутствия аутовены.

Пациентке с синдромом сдавления подколенной артерии были выполнены ликвидация сдавления, эндартерэктомия, боковая аутовенозная пластика подколенной артерии заплатой из малой подкожной вены.

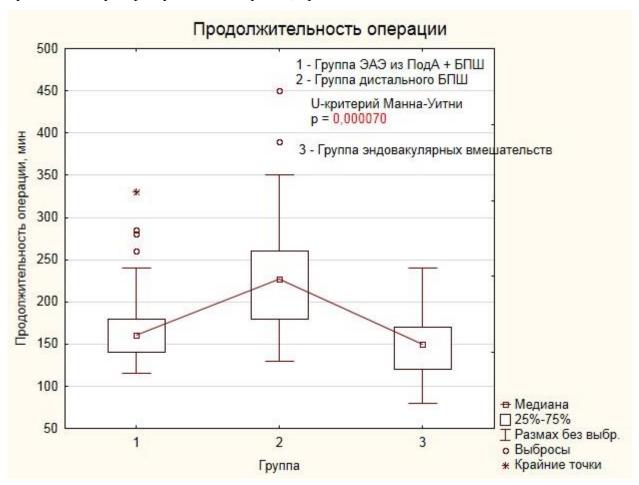

При сравнении продолжительности пребывания в стационаре мы выявили статистически значимое различие: пациенты, перенесшие ЭАЭ из подколенной артерии, дольше находились как на стационарном лечении, так и в хирургическом отделении в частности (Рисунок 4). Данная разница обусловлена количеством пациентов с трофическими изменениями и начинающейся гангреной в Группе 1, которым некрэктомии и экономные ампутации выполнялись в рамках первичной госпитализации. При этом длительность лечения в отделениях реанимации и интенсивной терапии достоверно не отличались между группами (р = 0,209), медиана составила 1 койко-день.

Рисунок 4. Койко-день в стационаре и в хирургическом отделении в группах ЭАЭ из ПодА+БПШ выше щели коленного сустава, дистального БПШ и эндоваскулярных вмешательств.

При анализе интраоперационных данных мы выявили достоверно большую продолжительность операции дистального БПШ: в среднем операция ЭАЭ из ПодА в сочетании с БПШ выше щели коленного сустава длилась на 70 минут меньше дистального бедренно-подколенного шунтирования (Рисунок 5). Это объясняется необходимостью забора аутовены

или подготовки большой подкожной вены в случае выполнения БПШ in situ – перевязка притоков под ультразвуковым контролем, кроссэктомия.

Рисунок 5. Продолжительность операции ЭАЭ из ПодА в комбинации с бедренно-подколенным шунтированием выше щели коленного сустава, дистального БПШ, эндоваскулярных вмешательств.

Кровопотеря в обеих группах статистически не различалась.

Различий в приросте ЛПИ после операции между группами больных не выявлено, что говорит об идентичности гемодинамического эффекта операции в сравниваемых группах (Рисунок 6).

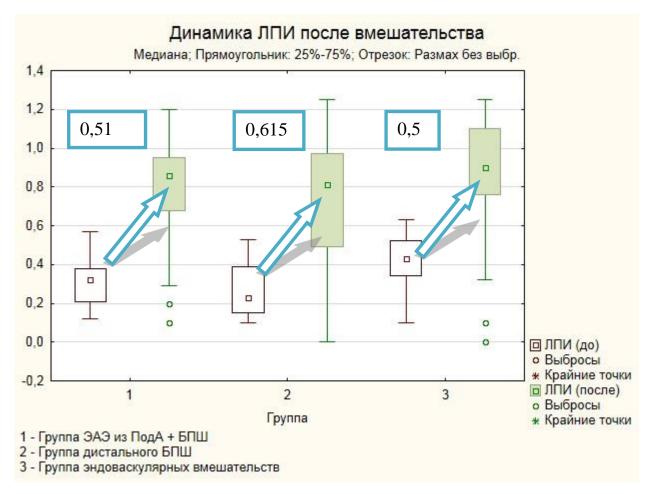
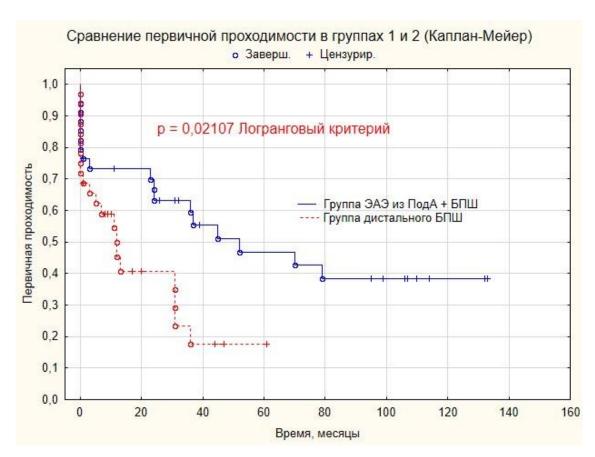


Рисунок 6. Динамика ЛПИ в группах в раннем послеоперационном периоде.

Во многих случаях мы выполняли оперативное пособие как "операцию отчаяния", в качестве последней попытки спасения конечности, что объясняет полученный процент ранних тромботических осложнений (Таблица 2). В группе ЭАЭ из ПодА + БПШ ранняя реокклюзия имела место в 7 случаях, при этом у 3 пациентов удалось восстановить проходимость посредством тромбэктомии из шунта и артерий голени. В группе дистального БПШ ранние тромботические осложнения были зарегистрированы у 8 пациентов, количество повторных операций составило 4. Статистической разницы между группами обнаружено не было (р = 0,669, метод Хи-квадрат Пирсона). Было установлено, что у пациентов с единственной проходимой артерией голени ранняя реокклюзия случалась достоверно чаще (р = 0,0388, тест х квадрат). 8 больных с ранними тромботическими осложнениями не потребовали повторных вмешательств ввиду отсутствия признаков тяжелой напротив, ишемии или, интраоперационной смерти превышал возможную пользу от вмешательства.

Таблица 2. Сравнение послеоперационных осложнений между группами 1 и 2.

Переменная	ЭАЭ из ПодА + БПШ (n = 34)	Дистальное БПШ (n = 32)	Значение Р
Ранняя реокклюзия	7	8	$0,669^{a}$
Нагноение	1	3	$0,273^{a}$
Лимфоррея	9	8	0,891 ^a
Пневмония	2	0	$0,163^{a}$
Тромбоз глубоких вен нижних конечностей	2	2	0,95 ^a
Ампутация в стационаре	2	2	0,95 ^a


а – Хи-квадрат тест, б – U-критерий Манна-Уитни

В отдаленном периоде мы сравнивали первичную и вторичную проходимость после вмешательств, выживаемость, уровень сохранения конечности, следили за динамикой ЛПИ, проводили анализ послеоперационной смертности, оценивали влияние состояния путей оттока и степени ишемии на результат.

При сравнении первичной проходимости между исследуемыми группами выявлена статистически значимая разница (p = 0,021): кумулятивная первичная проходимость в группе 1 на 74 месяц наблюдения составила 42,05% против 15,915% в группе 2. Важно отметить, что даже на 133 месяц после оперативного пособия в группе ЭАЭ из ПодА + БПШ первичная проходимость составила 37,85% (Рисунок 7).

Вторичная проходимость также статистически достоверно различалась между группами (p = 0,017). Кумулятивная вторичная проходимость в группах 1 и 2 на 74 месяц наблюдения составила 57,77% и 22,59% соответственно. При этом на 133 месяц после вмешательства в группе ЭАЭ из ПодА + БПШ вторичная проходимость составила 52,95%.

При анализе сохранения конечности после вмешательства мы не выявили статистически значимой разницы между группами (p = 0,33493, логранговый тест): пациентам группы 1 было выполнено 10 ампутаций на различных уровнях, группы 2 – 9 ампутаций на уровне средней и верхней трети бедра. Кумулятивная доля больных с сохраненной конечностью на 74 месяц после операции составила 66,91% в группе ЭАЭ+БПШ выше щели коленного сустава и 59,07% в группе дистального бедренно-подколенного шунтирования. При этом на 133 месяц после операции в группе 1 кумулятивная доля больных с сохраненной конечности составила 61,76%. Важно отметить, что доля высоких ампутаций в группе 1 составила лишь 40% (4 операции), а в группе 2 — 100%. Это связано, по нашему мнению, с улучшением коллатерального кровообращения при выполнении эндартерэктомии из подколенной артерии. Таким образом, в 6 случаях при ампутации удалось сохранить коленный сустав, что значительно улучшило качество жизни в отдаленном периоде.

Рисунок 7. Первичная проходимость в группах ЭАЭ из ПодА + БПШ и дистального БПШ.

В группе больных, которым была выполнена ЭАЭ из ПодА+БПШ выше щели коленного сустава, медиана ЛПИ составила 0.85 (интерквартильный размах 0-0.9), в группе больных, перенесших дистальное БПШ медиана ЛПИ на момент контрольного осмотра составила 0.51.

При статистическом анализе (Log rank test) большая кумулятивная выживаемость после эндартерэктомии из подколенной артерии в сочетании с БПШ выше щели коленного сустава, чем при дистальном бедренно-подколенном шунтировании, статистически незначима, что связано с более короткими сроками наблюдения в группе 2: к 74 месяцу наблюдения выживаемость в группе 1 составила 93,41% против 76,92% в группе 2.

При анализе первичной проходимости внутри группы 1 мы выявили закономерные различия в зависимости от количества артерий оттока и степени ишемии до операции. К 118 месяцу после операции кумулятивная первичная проходимость у пациентов группы 1 с тремя проходимыми артериями голени составила 70,15%, в то время как у больных с 2-мя и единственной проходимой артерией путей оттока 45,71% и 8,33% соответственно.

У пациентов, которым выполнялось вмешательство по поводу ХАНК 2 Б степени первичная проходимость на 103 месяц составила 49,36%, по поводу ХАНК III степени на 118 месяц — 41,93%, по поводу ХАНК IV степени на 133 месяц — 24,49%. К 118 месяцу после операции кумулятивная первичная проходимость у пациентов группы 1 с тремя проходимыми

артериями голени составила 70,15%, в то время как у больных с 2-мя и единственной проходимой артерией путей оттока 45,71% и 8,33% соответственно.

Важно отметить, что статистически достоверной разницы в первичной проходимости у пациентов с различной степенью хронической ишемии получено не было (p = 0.919, Хи-квадрат Пирсона), в то время как результаты достоверно различались в зависимости от количества проходимых артерий оттока (p = 0.00563, Хи-квадрат Пирсона). Таким образом, благоприятный прогноз отдаленных результатов в большей степени зависит от состояния путей оттока, нежели от исходной степени хронической ишемии.

На 61 месяц наблюдения у больных группы 2 со всеми проходимыми артериями голени кумулятивная первичная проходимость составила лишь 28,64%, с двумя артериями на 47 месяц – 20,4%, с единственной проходимой артерией голени на 20 месяц наблюдения 0%. Статистически значимого различия между подгруппами зарегистрировано не было.

У пациентов, которым выполнялось вмешательство по поводу ХАНК 2 Б степени первичная проходимость на 61 месяц составила 25,13%, по поводу ХАНК III степени на 47 месяц – 60%, по поводу ХАНК IV степени на 34 месяц – 0%.

У пациентов, перенесших эндоваскулярные методы лечения, первичная проходимость на 25 месяц после вмешательства составила 45,18%, вторичная – 55,77%.

выводы

- 1. Существующие методы восстановления магистрального артериального кровотока при протяженном поражении ПБА и ПодА нельзя назвать удовлетворительными, ввиду ограниченности применения, высокой частоты тромботических осложнений и низкой проходимости в отдаленном периоде, особенно при отсутствии подходящей аутовены.
- 2. Сегментарное поражение подколенной артерии (класс A и B по TASC II) является показанием к эндоваскулярному лечению за исключением случаев, когда этиологическим фактором является синдром сдавления, кистозное поражение адвентиции или тромбированная аневризма подколенной артерии.
- 3. Предложенная методика прямой эндартерэктомии из подколенной артерии в комбинации с бедренно-подколенным шунтированием выше щели коленного сустава представляет собой наиболее физиологичный метод восстановления кровотока нижних конечностей по сравнению с дистальным бедренно-подколенным шунтированием, поскольку позволяет сохранить функциональные возможности множества артериальных коллатералей на уровне коленного сустава.

- 4. При протяженных окклюзиях поверхностной бедренной и подколенной артерий классическим вариантом восстановления кровотока является дистальное бедренно-подколенное шунтирование, однако предложенная нами методика прямой эндартерэктомии из подколенной артерии в сочетании с бедренно-подколенным шунтированием выше щели коленного сустава является хорошей альтернативой стандартному варианту лечения данной локализации атеросклеротического процесса.
- 5. При сравнении эффективности предложенной нами методики проксимального бедренно-подколенного шунтирования с дистальным бедренно-подколенным шунтированием установлена более высокая первичная проходимость сосудистого протеза (42,05% против 15,92% через 74 месяца наблюдения); более высокая кумулятивная вторичная проходимость (57,77% и 22,59%, соответственно).
- 6. Кумулятивная доля больных с сохраненной конечностью на 74 месяц после операции составила 66,91% в группе ЭАЭ+БПШ выше щели коленного сустава и 59,07% в группе дистального бедренно-подколенного шунтирования. Доля высоких ампутаций (на уровне бедра) в группе 1 составила лишь 40%, а в группе 2 100%.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Подколенная артерия представляет собой исключительно важный элемент артериальной системы нижней конечности, в связи с чем, при лечении оклюзионностенотических ее поражений следует применять реконструктивные вмешательства, способные сохранить ее функциональные возможности.
- 2. При локальной окклюзии подколенной артерии необходимо думать не только об атеросклеротическом ее поражении, но и о более редких формах заболевания, таких как синдром сдавления, кистозное поражение адвентиции, тромбированная аневризма и др., что часто диктует необходимость прямого доступа для хирургического лечения.
- 3. При протяженных окклюзиях поверхностной бедренной и подколенной артерий возможно применять не только классическое дистальное бедренно-подколенное шунтирование аутовеной, но и разработанный нами метод бедренно-подколенного шунтирования выше щели коленного сустава с предварительной эндартерэктомией из подколенной артерии.
- 4. Использование предложенного нами способа восстановления магистрального кровотока нижних конечностей позволяет применять для этих целей не только аутовену, но и синтетический протез, а сохраненная в кровотоке подколенная артерия, даже при прогрессировании ишемических повреждений конечности часто позволяет выполнить

дистальный вариант ампутации (на уровне стопы или голени), что значительно улучшает качество жизни пациента.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Кузнецов М.Р., Решетов И.В., Магнитский Л.А., Васильев В., Марченко И.П., Матвеев А.Д., Луговой А.А., Тверская М.С. Эмбриология, анатомия и редкие патологии подколенной артерии: особенности хирургического лечения // Ангиология и сосудистая хирургия. 2018. Т24. №2. С. 146–157.
- 2. Кузнецов М.Р., Сапелкин С.В., Вирганский А.О., Магнитский Л.А. Способ восстановления магистрального артериального кровотока нижних конечностей // Новости хирургии. 2017. Т. 25. №. 1. С. 31-37.
- 3. Кузнецов М.Р., Косых И.В., Толстихин В.Ю., Кузнецова В.Ф., Магнитский Л.А. Сулодексид в консервативном лечении заболеваний периферических артерий // Ангиология и сосудистая хирургия. 2015. Т. 21. №. 4. С. 45-50.
- 4. Кузнецов М.Р., Косых И.В., Юмин С.М., Куницын Н.В., Кузнецова В.Ф., Толстихин В.Ю., Магнитский Л.А. Применение нафтидрофурила в ангиологии //Ангиология и сосудистая хирургия. 2014. Т. 20. №. 4. С. 27-35.
- 5. Кузнецов М.Р., Вирганский А.О., Косых И.В., Юмин С.М., Куницын Н.В., Голосницкий П.Ю., Несходимов Л.А., Магнитский Л.А., Мнацаканян Г.Т., Фукалов А.С. Возможности метаболической терапии при атеросклерозе // Неврологический журнал. − 2014. Т. 19. № 4. С. 56-60.
- **6.** Кузнецов М. Р., Магнитский Л. А. Возможности амбулаторного лечения хронической ишемии нижних конечностей //Стационарозамещающие технологии: Амбулаторная хирургия. -2017. N3-4 (67-68). C. 30-35.
- **7.** Magnitskiy L.A., Kuznetsov M.R. Case report: popliteal artery pseudoaneurism with arterio-venous fistula after total knee replacement // Материалы коференции «Controversies & updates in vascular surgery». Париж, 2017. С. 135.
- **8.** Магнитский Л.А., Кузнецов М.Р., Сапелкин С.В., Масленников М.А. Сравнение дистального бедренно-подколенного шунтирования с эндартерэктомией из подколенной артерии в комбинации с бедренно-подколенным шунтированием выше щели коленного сустава: краткосрочные результаты // Бюллетень НЦ ССХ им. А.Н. Бакулева РАМН. Сердечно сосудистые заболевания Тезисы XXII Всероссийского съезда сердечно-сосудистых хирургов.— Москва, 2016. Т. 17. № 6. С. 87.

- **9.** Магнитский Л.А., Моисеев А.А. Способ восстановления магистрального артериального кровотока при окклюзионно-стенотическом поражении подколенной артерии // Сборник тезисов XI Международной (XX Всероссийской) Пироговской научной медицинской конференции студентов и молодых ученых. Москва, 2016 г. С. 545-546.
- **10.** Кузнецов М.Р., Вирганский А.О., Магнитский Л.А. Восстановление магистрального артериального кровотока при окклюзионно-стенотическом поражении подколенной артерии // Вестник ассоциации ангиологов, флебологов и сосудистых хирургов нижегородской области, Материалы V Научно-практической конференции «Возможности диагностики и лечения заболеваний сосудов современный взгляд и шаг в будущее». Нижний Новгород, 2015 г. —№5. С.58.
- **11.** Кузнецов М.Р., Вирганский А.О., Магнитский Л.А. Способ восстановления магистрального артериального кровотока при окклюзионно-стенотическом поражении подколенной артерии // Альманах Института хирургии имени А.В. Вишневского, Материалы XII Съезда хирургов России. Ростов-на-Дону, 2015 г. №2. С. 993.

Список сокращений

БАП – баллонная ангиопластика

БПШ – бедренно-подколенное шунтирование

ДИ – доверительный интервал

ЗПА – заболевания периферических артерий

ИМТ – индекс массы тела

ИРСД – индекс регионарного систолического давления

КИ – критическая ишемия

КТ – компьютерная томография

ЛПИ – лодыжечно-плечевой индекс

ОНМК – острое нарушение мозгового кровообращения

ПТФЭ – политетрафторэтилен

ПБА – поверхностная бедренная артерия

ПодА – подколенная артерия

СО – стандартное отклонение

ТИА – транзиторная ишемическая атака

УЗАС – ультразвуковое ангиосканирование

ХАНК – хроническая артериальная недостаточность конечностей

ЭАЭ – эндартерэктомия

ЧТА – чрескожная транслюминальная ангиопластика

PAES – синдром сдавления подколенной артерии

TASC – межобщественный согласительный документ по ведению пациентов с заболеванием периферических артерий.