Козырин Кирилл Александрович

Эффективность гибридной реваскуляризации миокарда с использованием переднебоковой миниторакотомии

14.01.26 - сердечно-сосудистая хирургия

Автореферат

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении Научно-исследовательском институте комплексных проблем сердечно-сосудистых заболеваний

TI		
н	OVILLE III	NVICADATUTATI •
	аучный	DVKUBU/INIC/ID.
	,	руководитель:

доктор медицинских наук

Попов Вадим Анатольевич

Официальные оппоненты:

Чарчян Эдуард Рафаэлович — доктор медицинских наук, профессор РАН, членкорр. РАН, руководитель отделения хирургии аорты и её ветвей, Федеральное государственное бюджетное научное учреждение «Российский научный центр хирургии имени академика Б.В. Петровского».

Руденко Борис Александрович – доктор медицинских наук, Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр профилактической медицины».

Ведущая организация: Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский имени акалемика Е.Н. Мешалкина» МЗ РФ.

Защита состоится «___» ______2018 г. в __:__ часов на заседании диссертационного совета Д 208.124.01 при ФГБУ «Институт хирургии им. А.В. Вишневского» Министерства здравоохранения Российской Федерации по адресу: 117997, г. Москва, ул. Большая Серпуховская, 27.

С диссертацией можно ознакомиться в библиотеке ФГБУ «Институт хирургии им. А. В. Вишневского» Минздрава России и на сайте www.vishnevskogo.ru.

Автореферат разослан «_____» ____2018 г.

Ученый секретарь диссертационного совета, доктор медицинских наук

Сапелкин Сергей Викторович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Болезни системы кровообращения прочно занимают ведущее место в структуре общей смертности населения России, в последние 5 лет их удельный вес составляет 56-57%. В более чем в половине случаев причиной летальности является ишемическая болезнь сердца (ИБС), в основе которой лежит атеросклероз коронарных артерий.

Благоприятные результаты хирургического лечения при тяжелых формах ИБС подтверждены многочисленными рандомизированными исследованиями, что и является причиной широкому распространению этих методов в клинической практике [1,2]. На сегодняшний день к ним относятся аортокоронарное шунтирование (АКШ) как в условиях искусственного кровообращения (ИК), так и без ИК и чрескожные вмешательства на коронарных артериях (баллонная ангиопластика со стентированием).

Стандартом открытой реваскуляризации у больных с многососудистым поражением на сегодняшний день является АКШ в условия ИК и пережатия аорты с использованием стандартного стернотомного доступа. Хорошая бескровное визуализация, неподвижное И операционное поле при ЭТО достаточной защите миокарда сделали вмешательство очень распространенным, более девяностопроцентная 15-летняя a чем проходимость аутоартериальных кондуитов обеспечила его прочные позиции в арсенале методов лечения ИБС [3,4,5,6].

Однако остается довольно большое количество периоперационных осложнений, связанных с использованием искусственного кровообращения, особенно в группах высокого риска, и обусловленных выраженным системным воспалительным ответом, гипоперфузией, микро- и макроэмболизацией из аппарата ИК и восходящего отдела аорты, определяющих развитие различных тяжелых органных осложнений, таких

как неврологические, почечные, дыхательные и другие [7,8]. С целью исключения этих факторов и применяются методики без использования ИК, а также без вмешательства на восходящей аорте в группах высокого риска [9].

К ним относится методика OPCAB (Off-Pump Coronary Artery Bypass), по которой на сегодняшний день проводится до 25% операций прямой реваскуляризации миокарда. К сожалению, при использовании данного метода не было получено достоверных отличий со стандартным АКШ по риску развития периоперационных и инфекционных осложнений, снижению внутрибольничной смертности, длительности госпитализации, повторных операций, отдаленной выживаемости пациентов непосредственному результату реваскуляризации. Отличия В пользу работающем операций на сердце имеются только В количестве неврологических осложнений, в основном обусловленных отсутствием манипуляций на восходящем отделе аорты. Таким образом, при данном методе реваскуляризации остается ряд все тех же существенных недостатков, связанных травматичностью срединного стернотомного доступа, вызывающих неудовлетворение, особенно в сравнении с чрескожными (ЧКВ) [10]. Эндоваскулярная коронарными вмешательствами реваскуляризация демонстрирует наименьшую инвазивность, восстановление и меньшую частоту осложнений в сравнении с АКШ. Однако, главным недостатком ЧКВ является достаточно высокая частота рестеноза и повторных реваскуляризаций.

В связи с этим возник возврат интереса к операции, исключающей недостатки обоих вмешательств — реваскуляризация миокарда из переднебоковой миниторакотомии, предложенной в 60-х годах прошлого столетия и имевшей максимальную популярность в 90-х годах, в особенности в ее новой гибридной модификации, что представляет собой некое новое направление, дающее те же результаты, что и распространенные методы реваскуляризации, при меньшем количестве осложнений [11,12].

В данном контексте под гибридной технологией восстановления кровотока при множественном поражении коронарных артерий понимается плановое шунтирование бассейна передней нисходящей артерии (ПНА) из минидоступа с использованием маммарокоронарного шунта in situ с последующим чрескожным вмешательством на остальных бассейнах в сроки до 3 суток [13].

Основным гипотетическим обоснованием гибридного метода являются следующие две предпосылки:

- 1. шунтирование ПНА главного артериального сосуда сердца, кровоснабжающего до 50-70% миокарда ЛЖ левой внутренней грудной артерией (ЛВГА) является независимым предиктором выживаемости пациентов и «золотым стандартом» коронарной реваскуляризации [14,15];
- 2. ближайшие и отдаленные результаты стентирования огибающей и правой коронарной артерии и аутовенозного шунтирования этих же бассейнов идентичны как по проходимости стентов, так и шунтов [16].

Очевидными потенциальными преимуществами гибридного метода является менее травматичный доступ, меньшее количество инфекционных, цереброваскулярных и миокардиальных осложнений по сравнению с АКШ с ИК и по методике OPCAB.

Тем не менее гибридная реваскуляризация имеет и ряд недостатков в виде усложнения вмешательства (двухэтапное), усложнении принятия тактического решения при неуспехе одной из процедур. Шунтирование из минидоступа более требовательно к навыкам хирурга, менее удобные условия и для формирования анастомоза в условиях минидоступа.

Вместе с тем, рекомендации Американской Ассоциации Сердца по торакальной и кардиохирургии (2011) позиционируют выбор гибридного метода только у ограниченного контингента пациентов высокого риска, таких как пациенты с ИБС без значительного поражения клапанного

аппарата, наличия аневризмы сердца, при одно- или двухсосудистом поражении только бассейнов передне-верхушечной области сердца, при наличии тяжелых сопутствующих заболеваний, при отсутствии перспективы ЧКВ ПНА, а также при высоком риске вмешательств, связанных с манипуляциями на восходящей аорте [17].

В последних рекомендациях Европейского общества кардиологии (ESC) и Европейской ассоциации кардиоторакальных хирургов (EACTS) от 2014 г. миниинвазивная реваскуляризация миокарда (MIDCAB) и гибридная реваскуляризация (с использованием MIDCAB) рекомендованы пациентам с изолированным поражением ПНА и при многососудистом поражении, при сомнительном периферическом русле ветвей ОА и ПКА (используя МIDCAB ЛВГА-ПНА и ЧКВ ОА и ПКА); класс рекомендаций ПЬ, уровень доказательности С. У пациентов с ИМ с подъемом сегмента ST, у которых было выполнено стентирование инфарктзависимой ОА и\или ПКА в рамках ОКС и МIDCAB ПНА вторым этапом требуется для завершения полной реваскуляризации с тем же уровнем доказательности [18].

Несмотря на возможности гибридной технологии, соединяющей в себе преимущества открытой и чрескожной реваскуляризации, опыт использования данного вмешательства в мире явно недостаточен. Прежде всего, этого касается пациентов с многососудистым поражением коронарных артерий, большинство из которых подвергается АКШ (с ИК и без ИК). Расширение сферы применения реваскуляризации миокарда из минидоступа не только у пациентов с однососудистым поражением КА, но и при множественном поражении является актуальной задачей.

В мировой литературе сообщения на тему использования гибридного метода реваскуляризации миокарда имеют лишь единичный характер, особенно в сравнительном аспекте [19]. До сих пор отсутствует детальное описание показаний к выбору методики, объему и характеру предоперационной подготовки, оперативной техники, анестезиологического и реанимационного пособия, ближайших и отдаленных результатов.

В актуальных рекомендациях по реваскуляризации миокарда Европейского общества кардиологов (2014) гибридная реваскуляризация названа перспективным направлением, однако на территории РФ она пока не имеет широкого распространения.

Цель исследования

Обосновать и клинически апробировать гибридную методику многососудистой реваскуляризации миокарда с использованием переднебокового торакотомного минидоступа и стентов с лекарственным покрытием для оптимизации результатов лечения у пациентов со стабильной ишемической болезнью сердца.

Задачи исследования

- 1. Изучить госпитальные результаты шунтирования из минидоступа у пациентов с изолированным поражением ПНА в ретроспективном анализе и определить возможность использования данного метода в рамках гибридной технологии.
- 2. Оценить госпитальные и отдаленные (годовые) результаты гибридной технологии реваскуляризации миокарда при использовании переднебокового минидоступа и имплантации стентов с лекарственным покрытием в сопоставлении с группой стандартного АКШ у пациентов со стабильной ИБС.
- 3. Обосновать эффективность и безопасность гибридной технологии реваскуляризации миокарда при многососудистом поражении КА.

Научная новизна исследования

Обоснован и усовершенствован эффективный подход совместного использования двух перспективных направлений реваскуляризации в рамках одного гибридного метода реваскуляризации миокарда с использованием

переднебокового торакотомного минидоступа и стентов с лекарственным покрытием в рамках рандомизированного клинического исследования.

Уточнены показания, возможность и целесообразность данного вмешательства в группе пациентов со стабильной ишемической болезнью сердца и многососудистым поражением коронарных артерий. При этом достигается полная реваскуляризация при сопоставимых со стандартным КШ госпитальных и отдаленных результатах, что подтверждает данное рандомизированное исследование.

Подобные проспективные исследования ранее не проводились в России и в мире имеют единичный характер.

Практическая значимость и область внедрения полученных новых знаний

Внедрение и расширение показаний к реваскуляризации из минидоступа в изолированном или в гибридном вариантах позволит снизить частоту периоперационных осложнений и смертность, продолжительность лечения в реанимационном отделении и лечебном учреждении, улучшит результаты лечения больных ИБС в целом.

Положения выносимые на защиту

- 1. Гибридная реваскуляризация является воспроизводимым, эффективным и безопасным методом реваскуляризации миокарда.
- 2. Гибридная реваскуляризация демонстрирует сопоставимые со стандартным АКШ результаты на госпитальном и годовом этапах по клинической эффективности и частоте осложнений.
- 3. Гибридная реваскуляризация, являясь менее инвазивной методикой, чем КШ, демонстрирует меньшее количество раневых осложнений и более быструю реабилитацию пациентов, подтвержденную показателями качества жизни.

Апробация материалов диссертации

Основные положения, выводы практические рекомендации И диссертационного исследования доложены на заседании Проблемной ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний» (г.Кемерово, 2016, 2017), XIX Всероссийском съезде сердечно-сосудистых хирургов (г. Москва, 2013), IV Всероссийском специалистов по конгрессе рентгенэндоваскулярным диагностике и лечению (г. Москва 2014), XXI Всероссийском съезде сердечно-сосудистых хирургов (г. Москва, 2015), ХХ Ежегодной сессии Бакулева (г. Москва, 2016); на международных НЦССХ им. А.Н. конференциях EuroPCR (г. Париж, 2016, 2017), ESC congress (г. Барселона 2017), ТСТ (США, г. Денвер, 2017).

Личный вклад автора

Автор лично участвовал в обследовании и отборе пациентов для проведения гибридной реваскуляризации, принимал участие в проведении операций шунтирования из минидоступа, занимался послеоперационным лечением пациентов. Провел анализ клинических, лабораторных, инструментальных и анкетных данных 140 пациентов. Лично провёл анализ статистики и интерпретации данных, опубликовал эти результаты в центральной печати.

Публикации и апробация работы

По теме диссертации опубликовано 10 научных работ, из них 4 статьи в журналах, рекомендованных ВАК для публикации результатов диссертационных работ на соискание ученой степени кандидата медицинских наук.

Объем и структура диссертации

Диссертация изложена на 97 страницах машинописного текста и состоит из введения, 4 глав (обзор литературы, материалы и методы, результаты исследования, обсуждение), заключения, содержит выводы,

практические рекомендации и список литературы (96 источников). В тексте приведены 19 таблиц и 20 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Настоящее Исследование выполнено под руководством проф. В.А. Попова на базе ФГБНУ НИИ КПССЗ (директор — чл. корр. РАН О.Л. Барбараш) в отделении сердечно-сосудистой хирургии (зав. отд. — Р.С. Тарасов). Проведение работы было одобрено этическим комитетом ФГБНУ НИИ КПССЗ.

Исследование состоит из двух частей:

• В первой части ретроспективно анализировался уже полученный опыт проведенных вмешательств из минидоступа и гибридных вмешательств у пациентов с многососудистым поражением коронарного русла (n=121).

Данная ретроспективная часть исследования была направлена на анализ уже имеющихся госпитальных и отдалённых результатов MIDCAB и обоснования использования MIDCAB в рамках гибридного метода.

• В проспективную часть включались пациенты с многососудистым поражением (n=140), рандомизировались и подвергались гибридной реваскуляризации либо аортокоронарному шунтированию из стернотомии.

Проспективная часть предполагала слепую рандомизацию пациентов на группы гибридной реваскуляризации миокарда и стандартного АКШ с последующим анализом госпитальных и отдаленных результатов. Проспективная часть исследования проводилось согласно приведенному на рисунке 1 дизайну.

Рисунок 1. Дизайн проспективной части исследования

140 пациентов, поступивших в отделение КО НИИ КПССЗ с поражением двух и более КА с показаниями для хирургической коррекции, были последовательно включены в проспективное рандомизированное исследование. Подписание пациентом информированного согласия на участие в исследовании являлось обязательным условием включения. Критерии включения и исключения приведены в таблице 1.

Таблица 1. Критерии включения и исключения в проспективную часть исследования.

Критерии включения	Критерии исключения
Многососудистое поражение ≥ 70% и <96% стеноз 2-х и более сосудов, в т.ч. ПНА	Острый коронарный синдром
I-III ФК стенокардии (по классификации Канадской ассоциацией кардиологов) Бессимптомные пациенты с положительным стресс-тестом	Перенесенные ранее АКШ или тромбоз стента КА Невозможность приема длительной двойной антитромбоцитарной терапии
Сроки более месяца после манифестации ОКС	Сопутствующая патология (в т.ч. клапанная, ХСН высокого класса), увеличивающая риск любого из исследуемых методов
Возможность выполнения любой из методик реваскуляризации (гибридной, АКШ, ЧКВ) и слепой рандомизации между ними	Заболевания периферических артерий (клинически или гемодинамически значимые)
Согласие кардио- и рентгенхирурга со стратегией лечения	Сопутствующая патология, лимитирующая ожидаемую продолжительность жизни (например, некурируемая онкологическая патология)
Информированное согласие пациента	Участие в иных клинических исследованиях

Ангиографические критерии исключения: 1) наличие критических стенозов (≥95%), включая окклюзии в системе правой коронарной, огибающей и промежуточной артерий, подходящих для реваскуляризации; 2)

значимое поражение ствола левой коронарной артерии; 3) хроническая окклюзия коронарной артерии, более благоприятная для шунтирования, нежели для стентирования (высокий риск неуспеха ЧКВ).

Считаем обязательными условиями исследования: 1) согласие между кардиологом, кардиохирургом и интервенционным хирургом о полном соответствии пациента критериям включения и исключения (т.е. командный подход); 2) в группе гибридной реваскуляризации выполнение І этапом левосторонней миниторакотомии для шунтирования ПНА с помощью внутренней грудной артерии (MIDCAB) и II этапом - ЧКВ остальных коронарных артерий (система ПКА и ОА) с интервалом 0 - 3 суток в течение одной госпитализации; 3) применение стентов с лекарственным покрытием второго поколения, показавших свою эффективность в многоцентровых РКИ; 4) (ЧКВ) выполнении второго этапа В группе гибридной обязательно реваскуляризации миокарда выполнять контрольную ангиографию маммарного шунта к ПНА; 5) время начала двойной антитромбоцитарной терапии – в течение 1 суток после МІДСАВ в группе гибридной реваскуляризации с нагрузочной дозы клопидогреля 300 мг.

Статистическая обработка материала

Использовались программы: Statistica 8.0.360.0 (компания StatSoft) и PASW Statistics (версии 18.0.0 компании SPSS, Inc).

Визуализация распределения значений проводилась с помощью частотных гистограмм. Соответствие выборки нормальному распределению проверяли для выбора критериев оценки значимости межгрупповых различий. Для сравнения количественных показателей в группах применяли t-тест. Критерий Хи-квадрат использован для анализа различия частот в двух независимых группах. Критерий Вилкоксона применен для оценки динамики параметров. Анализ выживаемости по методу Каплана-Мейера применялся для определения прогностической значимости изучаемых параметров.

Уровень значимости р ≤ 0.05 принимался за достоверный при использовании всех методов статистического анализа.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

После учета критериев включения и исключения и полного клиникоинструментального обследования для настоящего исследования была проведена рандомизация методов хирургического лечения (АКШ, гибридная реваскуляризация). Рандомизация проводилась слепым методом с помощью конвертов (1:1). Пациенты были разделены на 2 группы. В І группу включали пациентов с предстоящим АКШ, во ІІ — с гибридной реваскуляризацией. В результате распределения по двум группам были сформированы выборки, сопоставимые по основным исходным клиническим показателям.

Исходные клинические характеристики исследуемых групп не показали статистически достоверных различий по всем параметрам кроме SyntaxScore. В гибридной группе SyntaxScore был ниже, чем в группе, подвергшейся традиционной реваскуляризации, и составил 15,6±0,8 против 19,2±1,3 баллов (p=0,034). Однако следует отметить, что оба значения не влияют на результат запланированного исследования, т.к. подразумевают низкий риск развития неблагоприятных событий. Данные приведены в таблице 2.

Таблица 2. Исходные клинические характеристики групп АКШ и гибридной реваскуляризации после рандомизации.

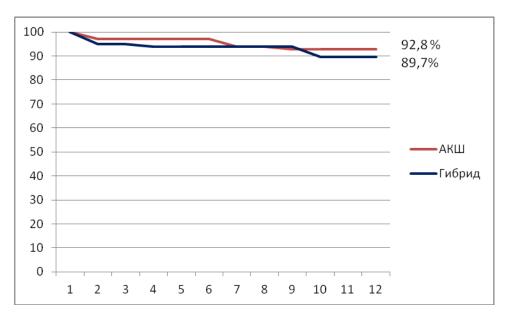
Всего (n=140)	АКШ (n=70)	Гибридная реваскуляризация (n=70)	Р
Возраст	61,02±3,9	59,07±6,19	0,088
Мужской пол	85,7%	82,8%	0,94

Класс стенокардии CCS:			
I	5 70/	0.50/	0.01
II	5,7%	8,5%	0,81
III	62,8%	64,2%	0,188
	31,4%	27,1%	0,754
Нарушение ритма и	14,2%	5,7%	0,141
проводимости сердца	,-,-	2,1,7	3,
ПИКС	54,2%	51,4%	0,907
ХИНК	8,5%	2,8%	0,247
СД	20%	18,5%	0,904
АΓ	100%	95,7%	0,977
ХОБЛ	2,8%	5,7%	0,524
Почечная дисфункция	5,7%	4,2%	0,769
Ожирение	11,4%	5,6%	0,362
SyntaxScore (баллы)	19,2±1,3	15,6±0,8	0,034
ФВ, %	59,8±6,8	61,5±4,7	0,202
EuroScore			
(баллы)	1,9±1,3	1,5±1,2	0,573
Аддитивный	1,75±0,84 %	1,6±0,78 %	0,772
Логистический	1,73±0,84 70	1,0±0,78 70	0,772
2-сосудистое поражение	42,8 %	54,2 %	0,183
3-сосудистое поражение	45,7 %	40%	0,68
4-сосудистое поражение	11,4 %	5,7 %	0,42
Степень стеноза КА	81,2±8,6%	79,1±9,2%	0,892

На госпитальном этапе в группах гибридной реваскуляризации и различий АКШ было значимых статистически количестве зафиксированных конечных точек исследования (Таблица 3). Выполнить гибридную реваскуляризацию удалось только 68 (97,1%) пациентам и в 1 случае (1,4%) был зафиксирован тромбоз шунта ЛВГА-ПНА после минидоступа, потребовавший реваскуляризации ИЗ дополнительного стентирования. Тем не менее статистическая значимость разницы полноты реваскуляризации миокарда с группой АКШ не была зафиксирована (p=0,489). В группе АКШ обращали на себя внимание 3 случая (4,2%) ревизии средостения после операции в связи с кровопотерей и отсутствие таковых при гибридной реваскуляризации, однако статистически различия здесь также не подтвердились (p=0,258).

Гибридная реваскуляризация в госпитальном периоде показала преимущества в меньшей послеоперационной кровопотере (р=0,007) и меньшем количестве гемотрансфузий (р=0,023). Потребность в инотропной поддержке была ниже в группе гибридной реваскуляризации (р=0,01). Длительность ИВЛ и интенсивной терапии при данной технологии также была меньше (р=0,03). В течение госпитального периода статистически значимые различия были получены по частоте регистрации пароксизмов фибрилляции предсердий, частоте развития пневмонии и потребности в плевральной пункции, раневых осложнениях, а также в длительности госпитализации: в группе гибридной реваскуляризации все эти показатели были ниже. Сравнение госпитальных показателей приведено в таблице 2. Также на 3 - 4-е сутки госпитализации оценивалась визуально-аналоговая шкала боли, при этом пациенты после вмешательства из минидоступа отмечали меньший болевой синдром (р=0,042).

Таблица 3. Характеристика госпитального этапа в сравниваемых группах


	АКШ (n=70)	Гибрид (n=70)	P
Летальный исход	0	0	
Интраоперационные нарушения гемодинамики	1	1	0,476
Повторные операции (ревизия средостения)	3	0	0,258
Средняя кровопотеря (мл)	520±67	227±114	0,007
Конверсия метода	0	2	0,489
Гемотрансфузия	12	2	0,023

Средняя длительность ИВЛ после операции (час)	5,8±3,7	3,5±2,1	0,03
Среднее время лечения в отделении интенсивной терапии (сут)	1,25±0,6	1,0	0,000531
Пневмоторакс	1	2	0.59
Пароксизм фибрилляции предсердий	16	3	0,01
Инотропная поддержка	14	2	0,01
Гидроторакс	50	37	0,337
Пункция плевральной полости	10	2	0,05
Пневмония	22	8	0,034
Раневые осложнения	6	0	0,047
ВАШ боли	5,1	3,7	0,042
Длительная (>14 сут) госпитализация	17	5	0,031

Ангиографические показатели на госпитальном этапе не сравнивались, поскольку в дизайне исследования контрольная КАГ не была запланирована после проведения АКШ и она выполнялась только в группе гибридной методики.

На годовом этапе сравнение по первичным точкам не выявило статистически значимой разницы между гибридной реваскуляризацией и АКШ. В целом небольшое количество осложнений обусловлено, вероятнее всего, исходными характеристиками исследуемых групп, низкими показателями SyntaxScore и EuroScore. Для наглядности различий данные на рисунке 2 приведены по совокупности первичных точек МАСЕ (смерть, ИМ, ОНМК, повторная реваскуляризация миокарда).

Рисунок 2. Сравнение АКШ и гибридной реваскуляризации в течение 1 года после операции по первичным точкам (смерть, ИМ, ОНМК, тромбоз шунта\стента, повторная реваскуляризация).

Свобода от МАСЕ в группе стандартного АКШ в условиях ИК составила 92,8%, в группе гибридной реваскуляризации миокарда - 89,7%. Достоверной статистической разницы не получено (p=0,275).

Результаты настоящего исследования продемонстрировали, что как в группе АКШ, так и гибридного вмешательства через год после операций у большинства пациентов отсутствует стенокардия - в группе КШ – у 61 (95,3%) из 64 опрошенных, а в группе гибридного вмешательства – у 56 (91,8%) пациентов из 61 опрошенного (р=0,116). Стенокардия в пределах I ФК выявлена у 2 (3,1%) пациентов в группе стандартной реваскуляризации и у 3 (4,9%) пациентов в группе гибридной реваскуляризации (р=0,193), а II ФК - у 1 (1,5%) и 2 (3,2%) (р=0,326) пациентов соответственно (рисунок 3).

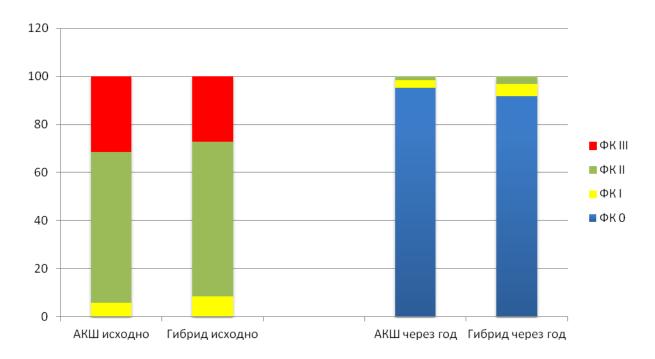


Рисунок 3. Динамика частоты выявления стенокардии и ее функционального класса (ФК) у пациентов с ИБС до и после различных методов реваскуляризации миокарда.

Болевой синдром в раннем послеоперационном периоде оценивали по визуально-аналоговой шкале боли на 3-4 сутки после операции (в гибридной группе на 3-4 сутки после МІDCAB, т.е. после проведения ЧКВ).

В группе АКШ опрошено 37 человека (52%), в группе гибридной реваскуляризации - 42 человека (60%). Анализ данной шкалы проводился в начальной стадии работы по мере включения пациентов в исследование. В группе открытой реваскуляризации (АКШ) показатель боли по ВАШ на 3 сутки составил 5,1, в группе гибридной реваскуляризации - 3,7 (р=0,042). При получении данных статистически достоверных различий гипотеза о операции лучшей субъективной переносимости пациентами многососудистым поражением была подтверждена. Малый торакотомный доступ, отсутствие повреждения костных структур (нет необходимости в фиксации каркаса грудной клетки В послеоперационном возможность полной аналгезии зоны операционного доступа с помощью местной анестезии (межреберная блокада была проведена в 2-х случаях) обеспечивает пациентам меньшую, по сравнению с АКШ, болевую нагрузку, облегчая течение раннего послеоперационного периода.

В дальнейшем обследование пациентов по ВАШ боли было прекращено, учитывая одновременное проведение опроса по более объемлющему и показательному в долгосрочной перспективе опроснику SF-36, в котором также изучается болевая чувствительность.

Дизайн исследования предполагал оценку статуса до операции, а затем через 1, 6 и 12 месяцев после операции.

Для оценки статистической достоверности различий применялось определение различий по баллам в каждой шкале и в конкретной точке опроса. Данные анализа приведены в таблице 4.

Таблица 4. Сравнение качества жизни в группе АКШ и гибридной группе (1, 6 и 12 месяцев) (значения дельты).

SF36	1мес	P	6мес	p	12мес	p
	-14,2 (-16,6; -		-12,3 (-13,3;-			
ФФ	11,8)	<0,05	11,4)	<0,05	-8 (-8,3; -7,6)	<0,05
	-24,0 (-26,9; -					
РΦ	21,3)	<0,05	-8,8 (-10,6; -7,3)	<0,05	-7,2 (-9,2; -5,2)	<0,05
	-22,3 (-24,7; -					
БОЛЬ	19,9)	<0,05	-1,8 (-4,2; 0,6)	Н3	0,9 (-1,6; 3,3)	НЗ
НЕИЖ	-10,7 (-12,8; -8,6)	<0,05	-0,9 (-2,9; 1,1)	НЗ	0,2 (-1,8; 2,2)	Н3
O3	-1,3 (-3,1; 0,5)	НЗ	0,3 (-1,7; 2,2)	НЗ	2,3 (0,2; 4,2)	НЗ
	-14,9 (-17,6; -					
СФ	12,4)	<0,05	-2,1 (-4,4; 0,1)	НЗ	-0,4 (-2,5; 1,8)	Н3
ЭФ	-11,4 (-14,3; -8,6)	<0,05	-1,2 (-3,8; 1,3)	НЗ	-0,7 (-3,2; 1,8)	НЗ
ПЗ	-5,3 (-7,3; -3,6)	<0,05	-0,8 (-2,6; 1,1)	НЗ	-0,1 (-1,9; 1,8)	НЗ

Достоверные преимущества гибридной реваскуляризации были получены непосредственно после операции (1 мес) по всем показателям кроме "Общего здоровья", и что можно объяснить как проявление эффекта меньшей инвазивности (травматичности) оперативного вмешательства. Реабилитация в короткие сроки отражена в динамике качества жизни на 6

месячной точке опроса, где все еще определяется разница по физическому и ролевому функционированию. К годовому этапу качество жизни в исследуемых группах сравнялось по всем показателям кроме физического и ролевого функционирования.

выводы

- 1. Гибридная реваскуляризация является воспроизводимым, эффективным и безопасным методом реваскуляризации, сопоставимым со стандартным АКШ по отсутствию смертности, МАСЕ и других осложнений (92,8%, 89,7%. p=0,275) в группах низкого хирургического риска SyntaxScore.
- 2. На годовом этапе клиническая эффективность гибридной реваскуляризации в виде отсутствия коронарной недостаточности и проходимости шунтов\стентов соответствует таковой у КШ (91,8% и 95,3% соответственно; p=0,258; 98,3% и 96,6% соответственно; p=0,337).
- 3. Гибридная реваскуляризация демонстрирует меньшее количество раневых осложнений, кровотечений и более быструю реабилитацию пациентов, показывая преимущества в физических показателях качества жизни.
- 4. Использование стентов второго поколения в позициях ветвей ОА и ПКА в рамках гибридного метода показывает сопоставимую клиническую эффективность по сравнению с аутовенозными кондуитами.
- 5. Шунтирования из минидоступа (MIDCAB) у пациентов с изолированным поражением ПНА является эффективным, воспроизводимым и безопасным методом реваскуляризации как само по себе, так и в рамках гибридного метода.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- Гибридную реваскуляризацию целесообразно рассматривать как эффективный метод хирургического лечения определенных групп пациентов с многососудистым поражением коронарного русла.
- При отсутствии должного опыта, учитывая кривую обучения, целесообразно применять методику MIDCAB с осторожностью у пациентов с ожирением, ангиографическими признаками кальциноза или интрамиокардиального расположения ПНА.
- При процедуре MIDCAB следует проводить торакоскопию и перикардиоскопию (а также визуализацию ПНА для шунтирования) всегда до торакотомии. Торакотомия выполняется прицельно на место анастомоза ЛВГА-ПНА.
- Подтверждение проходимости анастомоза ЛВГА-ПНА из минидоступа с помощью флуометрии во время операции обязательно.

ПЕРЕЧЕНЬ ПЕЧАТНЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ Публикации в журналах, рекомендованных ВАК

- **1.** Шунтирование передней межжелудочковой артерии из переднебоковой миниторакотомии. Барбараш Л.С., Ганюков В.И., Козырин К.А., Моисеенков Г.В., Попов В.А. // Ангиология и сосудистая хирургия, 2012.-N 2.-C.117-122.
- 2. Малоинвазивный гибридный подход к реваскуляризации миокарда. Барбараш Л.С., Ганюков В.И., Козырин К.А., Моисеенков Г.В., Попов В.А., Тарасов Р.С., Хаес Б.Л. // Кардиология и сердечно-сосудистая хирургия 2013; Т.6; № 6. С.4-8.
- 3. Сравнительный анализ результатов гибридной стратегии реваскуляризации миокарда и многососудистого ЧКВ с использованием стентов с лекарственным покрытием второго поколения у пациентов со стабильной ишемической болезнью сердца и многососудистым поражением коронарных артерий. Барбараш Л.С., Ганюков В.И., Козырин К.А., Кочергин Н.А., Шилов А.А. // Кардиология и сердечно-сосудистая хирургия. 2016; Т. 9; № 4. С.17-21.

4. Гибридная и эндоваскулярная реваскуляризации пациентов со стабильной ишемической болезнью сердца и многососудистым поражением коронарных артерий. Результаты рандомизированного исследования. Барбараш Л.С., Ганюков В.И., Козырин К.А., Кочергин Н.А., Шилов А.А. // Кардиологический вестник, 2017.-N 2.-C.40-46.

СПИСОК СОКРАЩЕНИЙ

АКШ – аорто-коронарное шунтирование

ИБС – ишемическая болезнь сердца

ИК – искусственное кровообращение

ИМ – инфаркт миокарда

ИТ – интенсивная терапия

КА – коронарная артерия

ЛВГА – левая внутренняя грудная артерия

МИРМ – миниинвазивная реваскуляризация миокарда

МКШ – маммарокоронарное шунтирование

ОА – огибающая артерия

ОНМК – острое нарушение мозгового обращения

ПНА – передняя нисходящая артерия

ПКА – правая коронарная артерия

ФВ – фракция выброса

ЧКВ – чрескожное коронарное вмешательство

ESC\EACTS - Европейское общество кардиологов и Европейская ассоциация кардиоторакальных хирургов

MIDCAB – minimally invasive direct coronary artery bypass (шунтирование КА из минидоступа)